Gelfand-Kazhdan criterion

نویسنده

  • Paul Garrett
چکیده

Proofs that endomorphism (convolution) algebras are commutative most often depend upon identifying an anti-involution to interchange the order of factors, but which nevertheless acts as the identity on the algebra or suitable subalgebras. Silberger gave such an argument for the spherical Hecke algebras of p-adic reductive groups, for example. Apparently the first occurrence of the Gelfand-Kazhdan criterion idea is in I.M. Gelfand, ‘Spherical functions on symmetric spaces’, Dokl. Akad. Nauk SSSR 70 (1950), pp. 5-8. An extension of that idea appeared in I.M. Gelfand and D. Kazhdan, ‘Representations of the group GL(n, k) where k is a local field’, in Lie Groups and their Representations, Halsted, New York, 1975, pp. 95-118. A relatively recent survey of some of this is given by B. Gross, ‘Some applications of Gelfand pairs to number theory’, Bull. A.M.S. 24, no. 2 (1991), pp. 277-301.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Applications of Gelfand Pairs to Number Theory

The classical theory of Gelfand pairs has found a wide range of applications, ranging from harmonic analysis on Riemannian symmetric spaces to coding theory. Here we discuss a generalization of this theory, due to Gelfand-Kazhdan, and Bernstein, which was developed to study the representation theory of p-adic groups. We also present some recent number-theoretic results, on local e-factors and o...

متن کامل

Algebraic and combinatorial properties of zircons

In this paper we introduce and study a new class of posets, that we call zircons, which includes all Coxeter groups partially ordered by Bruhat order. We prove that many of the properties of Coxeter groups extend to zircons often with simpler proofs: in particular, zircons are Eulerian posets and the Kazhdan-Lusztig construction of the Kazhdan-Lusztig representations can be carried out in the c...

متن کامل

Affine Jacquet Functors and Harish-chandra Categories

We define an affine Jacquet functor and use it to describe the structure of induced affine Harish-Chandra modules at noncritical levels, extending the theorem of Kac and Kazhdan [10] on the structure of Verma modules in the Bernstein–Gelfand–Gelfand categories O for Kac–Moody algebras. This is combined with a vanishing result for certain extension groups to construct a block decomposition of th...

متن کامل

Graded and Non-graded Kazhdan-lusztig Theories

Let %‘A be the category of finite dimensional right modules for a quasi-hereditary algebra A. In the context of various types of Kazhdan-Lusztig theories, we study both the homological dual A! = Extt, (A/ rad(A), A/ rad(A)) and the graded algebra grA = @rad(A)j/rad(A)j+‘. For example, we investigate a condition introduced in [6], and here called (SKL’), which guarantees that A!’ E gr A. A stren...

متن کامل

Generalized Harish

In the first part of the paper we generalize a descent technique due to HarishChandra to the case of a reductive group acting on a smooth affine variety both defined over arbitrary local field F of characteristic zero. Our main tool is Luna slice theorem. In the second part of the paper we apply this technique to symmetric pairs. In particular we prove that the pair (GLn(C), GLn(R)) is a Gelfan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005